Localizing softness and stress along loops in 3D topological metamaterials
نویسندگان
چکیده
منابع مشابه
Localizing softness and stress along loops in 3D topological metamaterials.
Topological states can be used to control the mechanical properties of a material along an edge or around a localized defect. The rigidity of elastic networks is characterized by a topological invariant called the polarization; materials with a well-defined uniform polarization display a dramatic range of edge softness depending on the orientation of the polarization relative to the terminating...
متن کاملSelective buckling via states of self-stress in topological metamaterials.
States of self-stress--tensions and compressions of structural elements that result in zero net forces--play an important role in determining the load-bearing ability of structures ranging from bridges to metamaterials with tunable mechanical properties. We exploit a class of recently introduced states of self-stress analogous to topological quantum states to sculpt localized buckling regions i...
متن کاملTransformable topological mechanical metamaterials
Mechanical metamaterials are engineered materials whose structures give them novel mechanical properties, including negative Poisson's ratios, negative compressibilities and phononic bandgaps. Of particular interest are systems near the point of mechanical instability, which recently have been shown to distribute force and motion in robust ways determined by a nontrivial topological state. Here...
متن کاملLOOPS: Localizing Object Outlines using Probabilistic Shape
Discriminative tasks, including object categorization and detection, are central components of high-level computer vision. However, sometimes we are interested in more refined aspects of the object in an image, such as pose or articulation. In this paper we develop a method (LOOPS) for learning a shape and image feature model that can be trained on a particular image class, and used to outline ...
متن کاملTopological mechanics of gyroscopic metamaterials.
Topological mechanical metamaterials are artificial structures whose unusual properties are protected very much like their electronic and optical counterparts. Here, we present an experimental and theoretical study of an active metamaterial--composed of coupled gyroscopes on a lattice--that breaks time-reversal symmetry. The vibrational spectrum displays a sonic gap populated by topologically p...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Proceedings of the National Academy of Sciences
سال: 2017
ISSN: 0027-8424,1091-6490
DOI: 10.1073/pnas.1713826115